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Elementary areas and volumes are also used and are constructed from the increments in
(A.8). Thus a typical elementary area in the Cartesian xy plane is dx dy, while typical
volume elements dr in the three systems are

dr=dxdyd:z —Cartesians
dr=rdrdfd: —cylindrical polars
dt =r?sin  dr d§ d ¢ —spherical polars

L ] P (r, 0, Z) (A.9)

0 A3 Partial differentiation, partial derivatives (Chapter 3 onwards)
T When a quantity Z is a well-behaved! function of one other quantity x, it can be
represented by a curve Z =f{x)asin Fig. A.6a: dZ/dx can be evaluated at any point such as

P, and is equal to the slope of the tangent to the curve at that point.
(a) If, however, Z is a function of two quantities, x and y, then Z =f{x, y)is a surfacein X 0,7
coordinates, part of which is drawn in Fig. A.6b. In this case, dZ/dL can have an infinite
- number of values at a point P depending on the direction of L in the xy plane. An example
is the rate of change of height of a hill with distance: the result depends entirely on the

direction of travel.

When we have Z = f{x, y) we commonly use two rates of change—that of Z with x when
yis held constant, denoted by (#Z/dx),, and of Z with y when x is held constant, (0Z/ay),.

P (6, ¢) :

In Fig. A.6b these correspond to the slopes at P and Q of sections of the surface cut by xZ

0 A and yZ planes respectively. They are known as partial differential coefficients or partial
' Yy derivatives.

hN

(b)

We often wish to know the increment in Z when both x and y vary by dx and dy,
respectively. Since the increment due to dx alone is (92 /0x), dx and that due to dy alone is

(0Z/dy).dy, the total dilferential dZ is

oz oz
Z=—])d — ] d :
az~(%) (%) o (A10)

For functions of more than two variables, say Z ={{(x, y, z), the use of (0Z/0x) implies
Figure A4 (a) Cylindrical that all the other variables are to be held constant. For instance, if Z = x2y + 22 + 322, then
polar coordinates and their 0Z/0x =2xy; similarly, if Z = xy + yz then 6Z/dx = y. The function Z cannot now be drawn
relationship to Cartesians; (b) ¢ the total increment in Z due to increments in x, y and z is, by an extension of (A.10),
spherical polar coordinates
ey o2-(2 o (Z)oy + () i
Ox oy 0z

As an example, the potential V of Chapter 3 is in general a function of three variables
because its value depends on position in space. In Cartesians it would be a function of X,/
and z, and its three principal gradients would be denoted by dV/dx, 3V/dy, 9V /dz.

Occasionally a quantity may be expressed in terms of one set of coordinates and (hE‘
variation with respect to another is wanted. For instance, the potential V duetoa dip011¢:_lﬁ
usually in plane polar coordinates and dV/dx may be required. In carrying out suchd

calculation, expressions like dr/dx, 86/0x, etc., arise. They are easily evaluated when

needed from Egs (A.4) and (A.5). For example,
Ox/dr=cos 8 =x/r; 0x/00= —rsinf=—y
Orjox=xfr=cos®;  86/dx=—y/r*=—(sinO)/r

with corresponding expressions for y. Note particularly that dx/dr# 1/(3r/ ox).

dL =rd#f
dé

[

Figure A.5 An element of
displacement perpendicular to
the radial coordinate.

. . L . contl!
" We usually assume at least that the function and its first derivative are single-valued CORE
functions of x.
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