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d,4 or dSAppendix A

Sundry mathematical ideas

dQ = 6,4112 dSlr2
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4.3 shows that the relationship between the two

op = 9{*{
sets will be

*5:î:*'"i"îTd ansres: o and

4.1 Plane and solid angleo (Chapters 2' 4' 7 and e)

A plane angle 0 in radians (Fig. A.1) is given by the ratio s/r, where s is the length ofthe arc

ofa circle centred at O cut àffiy thé aris ofthe angle and r is the radius ofthis circle, For a

sm"tt angt. d0, the chord and arc dilter in length by a second order of smallness and d0 is

given equallY well bY ds/r or dl/r.- 
A soli6 unil" O l, an extension to three dimensions of the above idea' To define a solid

angle (Fig. Al2), a sphere of radius r is constructed with centre at the apex of the angle O.

S-uipor" itt. u.â cui offon the surface ofthis sphere by the generators ofthe angle is S. Thc

solid angle is given in steradiaw by

Q:Slrz (definition of O) (A'l)

It follows that the complete solid angle about a point is 4z because the surface area of a

rplor ir +"rr. Another useful result which also follows from the definition is that the solid

angle at the apex of a cone of semi-vertical angle 0 is

or 
x=rcosdi 

Y:rsino

Three dimensions To , 
r : (x2 + )'z)ttz ' 0: tan- t (y/x) 

(A'1],

drmensional space, a ,',o,!?:\.the.cartesian "oo.ain"r* t" , v. zl or ^ ^ 

(A'5)
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ffiTi*mË;i:i:JJ::"ng,effi
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For a small solid angle do,

{).on :2n(l - cos 0)

the plane area d.4 differs

dAlr2. fi an area dS is not
from ds by a second order

smallness that da dSlr2 of normal to the radius r, then v , (x,ù
(r,0)

so
i must be projected on to a plane which

subtended by it at O is then given bY

ts normal to f an alea ds cos 0 The solid

dS cos 0dQ: 
"r'

0
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Figure A.S Plane Cartesian

4.2 Coordinate eyetems, particularly polar coordinates (Chapter 3 and plane polar coordinates.

onwards)

Two dimersions Instead of specifying the position of a point in a plane by-its

coordinates x and y, it is someiimei convenient to use plane polar coordinates lr'

d,x, dy dz-Cartesians
J o dr, r d0, dz-cylindrical polarsd0:dslr or dllr dr r de, r sln 0 dd-spherical (A. )are ln fact the

polars

Figure 4.1 Plane angles:0
and d0 are in radians.

B and
components of an elementary vectorthe gradient ln polars displacement_see

) and (8.34).1
Sec. B.o glven ln Eqs (8. 30 of
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4.4 Line

z Elementary areas and volumes are also used and are constructed from the increments in
(4.8). Thus a typical elementary area in the Cartesian xy plane is dxdy, while typical
volume elements dz in the three systems âre

dr:dxdy dz 
-Cartesiansdr:rdrd9dz --cylindrical polars (A.9)

dt : 12 sin 0 dr d0 d@-spherical polars
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4.3 Partial differentiation, partial derivatives (chapter 3 onwards)

when a quantity Z is a well-behavedl function of one other quantity x, it can be
represented by acvve z:f(x) as in Fig. A.6a: dZ ldx can be evaluated at any point such as
P, and is equal to the slope of the tangent to the curve at that point.

lï,however,Z isafunctionoftwoquantities,xandy,then Z--f(x,y)isasurfaceinx,y,Z
coordinates, part of which is drawn in Fig. A.6b. In this case, dZldL can have an infinite
number of values at a point P depending on the direction of r in the xy plane. An example
is the rate ofchange ofheight ofa hill with distance: the result depends entirely on ihe
direction of travel.

when we have Z:f(x,y) we commonly use two rates of change-that of z withx when
y is held constant, denoted by (ôZ lôx)r, and of Z with y when x is held constant, (ôZ lôy),..
In Fig. A.6b these correspond to the slopes at P and Q of sections of the surface cutb." i2
and yZ planes respectively. They are known as partial dffirential cofficients or partial
deriuatiues.

we often wish to know the increment in Z when both x and y vary by dx and dy,
respectively.Sincetheincrementduetodxaloneis (ôzlôx)rdxandthatduetodyutonels
(ôZlôy)"dy, the rotal differential dZ is

az:(ff),a..(K).* (A,o)

For functions of more than two variables, say Z:f(x,y,z), the use of @Zlôx) implies
that all the other variables are to be held constant. For ins tance,if Z : x2 y * 2y2 + 322 ,then
ôzlôx:Zxy;similarly,iTZ:xy tyzthen ôZlôx: y.The function Z cannot now bedrawn
but the total incremen t in z due to increments in x, y and z is, by an extension of (A.10),

Z = f(x) at ffi).
x v

ôx v
(a) paff of rhe surface Z = /@, y)

x *
z k)
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Figure AA (a) Cylindrical
polar coordinates and their
relationship to Cartesians; (b)
spherical polar coordinates
and their relationship to
Cartesians. az:(ff)a..(K)r.(E)" (4.il)

As an example, the potential Iz of Chapter 3 is in general a function of three Bbecause its value depends on position in space. In cartesians it would be a function of
anld, z, and its three principal gradients would be denoted by ôVlôx, ôVlôy, ôVlô2.

Occasionally a quantity may be expressed in terms of one set of coordinates and
variation with respect to another is wanted. For instance, the potenti al v dueto a

dL: r d0

usually in plane polar coordinates and ôVlôx may be required. In carrying out
calculation, expressions like ôrlôx, â01ôx, etc., arise. They are easily evaluated
needed from Eqs (A.4) and (A.5). For example,

ôxlôr:cos0:xlr; ôxlôï:-rsin0:-_1l
ôrlôx:xlr:cos0; ô01ôx: -ylr2: -(sin0)lr .

with corresponding expressions for y. Note particularly that ôxlôr*1l,frlôx)'

d0
r

0

Figurà Â.s An element of
displacement perpendicular to
the radial coordinate.

r We usually assume 4, least rhatthe function and its first derivative are single-valued
functions of x.


